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SUMMARY 

Equations are developed which show an analytical approach 
to simulating the 0-g impact loading of satellite swinging booms. 
The equations are obtained by simple manipulation of the equa- 
tions of motion and the kinetic and potential energies involved 
and are verified by data from the actual spin tests of the Inter- 
national Ionosphere Satellite Ariel I (1962 01). /q d r Hoe 
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LIST OF SYMBOLS 

I a Distance from the system spin axis to the boom pivot points. 

Energy contained in all appendages due only to the component of boom angular velocity parallel 
to the satellite spin axis, that is, 8 .  

Total moment of inertia about the spin axis of the satellite, spent last stage, and attachments. 

Total moment of inertia about the spin axis of the satellite, spent last stage, and attachments 
minus the inertia of the booms. 
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Total moment of inertia about the spin axis of the test model and attachments. 

Total moment of inertia about the spin axis of the test model and attachments minus the inertia 
of the booms. 

Total torque on the booms during erection. 

Arm length, or the distance from the boom pivot point to the boom weight m, 

Total mass of each uniformly distributed boom arm. 

Mass on the end of each boom. 

Number of booms on the satellite. 

Distance from the boom pivot point to the center of the boom weight m. 

Total energy of satellite, spent last stage, and attachments. 

Total potential energy of the spinning system in a 1-g conservative field. 

Total potential energy of the test system for any value of e .  
Total weight of each uniformly distributed boom arm. 

Weight on the end of each boom. 

Total deflection at impact of the end of each appendage. 

Boom angle from the folded position where e = 0". 

First derivative of e, or the component of the angular velocity of all appendages in a direction 
parallel to the spin axis. 

Angular velocity of entire system about the intended spin axis. 

First derivative of x, or the angular acceleration of the entire system about its spin axis. 

Weight per unit length of the uniformly distributed boom arm; obtained by dividing the density of 
the boom arm by the cross-sectional area. 
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General Notation 

Subscript o : Initial system condition prior to boom erection. 

Subscript 2 : Final system condition after boom erection. 

Subscript g : Refers to an expression written for the l-g force field condition. 

Subscript z : Refers to an expression written for the 0-g force field condition. 
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INTRODUCTION 

Satellite missions often dictate that the payload have appendages, or booms, extending out from 
the main structure. Because of physical limitations, it may be necessary to open the booms from a 
closed position after nose-fairing release. The booms usually will be erected either by a telescoping 
mechanism or, if space is limited in the main satellite body, by a swinging boom technique in which 
the folded booms swing out when released. 
Prior to the last-stage ignitionnormally 
the system will be spin stabilized and en- 
ergy for the boom erection will result 
from the spin. 

The main problem involved in develop- 
ing anerectable minging boom is to devise 
testing procedures which simulate actual 
erection conditions in a 0-g field. 

This report gives a method used during 
development of the International Ionosphere 
Satellite Ariel I (1962 01) for simulating 
boom erection conditions in a 0-g field. 

ANALYSIS 

Figure 1 is a sketch of the spin sys- 
tem and c o o r d i n a t e  system which is 
discussed. The parameters are: 

a Distance from the system spin axis 

x Distance from the boom pivot point 
to the boom pivot points. 

to a point on the boom arm. 

SATELLITE BODY 

SPENT LAST STAGE 

iU 
i a t -  2 

Figure 1-Satellife and last stage. 
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Mass on the end of each boom. 
Arm length, or the distance from the boom pivot point to the boom weight m. 

Distance from the boom pivot point to the center of the boom weight m. 

Boom angle from folded position where 8 = 0". 
Angular velocity of the entire system about the symmetrical axis. 

It is assumed that there are two booms 180 degrees apart. The free swinging booms will normally 
be designed to take the following two types of loads: 

1. The total torque L on the boom system during raising of the boom. 

2. The energy E, that must be absorbed to stop the booms in the erected position. 

Normally at the time of a satellite boom erection the system is spinning essentially in a 0-g 
field and moving at a constant velocity; thus, the system can be examined analytically as if it were 
stationary and spinning. It is relatively easy to show that the total torque on the two boom hinges 
during swing-up is given by the expression 

where 

n is the number of appendages, 
M is the total mass of each boom arm, and 
'h: is the system's angular acceleration about its spin axis. 

The total kinetic energy of the whole satellite system is given by the expression 

1 1 
T, = 7 nmr2i2 + x2dx t T k2 ( r  s i n e  t a ) 2  

(2) 
1 1 

t npk2 6 (x s i n 0  t a ) 2  dx t Ibk2 , 

where p is the uniformly distributed weight per unit length (lb/in) of the boom arm and I, is the 
total moment of inertia of the entire structure less that of the booms. Equation 2 reduces to 

k t h  momentum and energy are  conserved in the system. In the Lagrange formulation, the partial 
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I 
derivative of Equation 3 with respect to A gives the momentum equation for the entire system, 
since a T / a A  = 0; 

Since 0 = 0" and A = A, at time t = 0, the momentum equation becomes 

na'&,(m + Y) + I,&, = Constant . (5) 

From the conservation of momentum it follows that 

When Equation 6 is differentiated with respect to e and multiplied by 4 ,  an expression for x is ob- 
tained. With the expression for X and Equations 1 and 3, it is easy to plot the energy contained in 
the booms due to 4 and the torque on the hinges. If this procedure is followed, it wi l l  become obvi- 
ous that the energy due to 6 contained in the booms at full erection governs the structural design 
of the boom far  more than does the torque during erection. For acceptance testing of a boom systen 
it is therefore important to simulate the kinetic energy of the boom at impact in the erected position 
This paper presents a method for doing this and neglects any attempted simulation of the torsional 
forces involved. 

SIMULATION PROCEDURE 

To simplify calculations it is assumed that all tests will be run with the spin axis of the system 
parallel to the 1-g force field. Also, it is assumed that full erection occurs at e = 7712 . 

For a correct simulation at e = ~ 1 2 ,  the kinetic energy EL contained by the booms due to 6 
when tested in a 1-g field must equal the kinetic energy E~ in the booms due to 6 when erection 
occurs in space, that is, E= = E ~ .  

Solution for E, 

Because of the conservation of energy, TL = constant . When T, is evaluated at t = 0 (e  = 0") 

and the result is equated to Equation 3, an expression is obtained which may be solved for Ez . 



which is easily simplified to 

Solution for Eg , 

The term E, is obtained by first writing Equation 3 for a system in a conservative field of 1-g, 
that is, 

1 1 1 7 nmr2e2 + - 6 nhU 262 + T n d 2  ( r  s i n  8 + a ) 2  T, 
= 

( 10) 
l n k 2  - 2 .  2 1 (i 1 s i n  e + a1 s i n  e + a2) + 2 J b i 2  + v , + 2 

where v equals the total potential energy of the entire system. At t = 0, 0 = O", this becomes 

1 1 
(11) T, = 1 n a 2 k t  (m + M) + ij Jb);: + V, = Constant . 

This expression can now be substituted for T~ in Equation 10, and the result solved for E,: 

1 1 1 - n k 2  (i j2sin2  e + a1 s i n  e + a2 - T j bh2  - v, , 

where V, denotes the potential energy of the entire system for any value of 0 .  

4 



When Equation 12 is evaluated at e = 7112 and simplified, the following is obtained: 

where the term (vz - v,) expresses the change in potential energy of the entire system due to the 
erection of the booms. 

Solution for Aog 

If the initial angular velocity X, and all  of the inertias, masses, and dimensions for the entire 
system are the same in both the 0-g and 1-g states, then by comparing Equations 9 and 13 it can be 
seen what must differ between the two conditions. Since in a 1-g field the term (v, - v,) is not 
zero, E, will be less than E, by the amount (V, - V,) . The boom angular velocity 8, , at e = n/2 
in the 1-g field must be less than 
right-hand sides of Equations 9 and 13 must be made equal at the point of fu l l  erection. Thus, 

in the 0-g field. Therefore, to achieve the result E, = Eg, the 

1 I , i t  (1 2) = $ Joio,' (1 - 2) - (V, - V,) . 

Inspection of Equation 14 shows that the inertias, the initial system spin rate, or  both may be 
altered to make the identity hold. Since normally any testing will be accomplished with a model of 
the satellite, it usually is easy to llslug up" the system so that I, = J, and I, = J,. Therefore, 
with a known initial design spin rate of x, it is easy to solve Equation 14 for the only unknown, the 
initial spin rate of the test system io : 

Test Arrangement 

The spin test setup should be a simu- 
lation of the hardware shown in Figure 1 
mounted on a suitable spin table. A typical 
setup is shown in Figure 2. 

It is imperative that the entire system 
be "free-wheeling" during the boom erec- 
tion, that is, that there be as little as pos- 
sible externally applied torque (d r i v e 
power, friction, air drag, etc.) acting on 
the system. Some type of clutching ar- 
rangement, as is shown in Figure 2, is 

GRAVITY 
FIELD 

I 
SATELLITE BODY I 

X - -  

SATELLITE BOOM 

STRUCTURE WITH INERTIA 
OF SPENT LAST STAGE 

CLUTCH 

DRIVE MOTOR 

Z 

Figure 2-Spin test setup. 
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therefore necessary to remove the drive motor from the system just prior to boom release. A 
well engineered bearing design will reduce the friction torque to a negligible amount. The torque 
induced by wind resistance generally may be neglected unless the swinging appendages present a 
large area; in such a case it might be necessary to conduct the tests in a vacuum chamber. 

Use o f  bOs 
With the setup shown in Figure 2, the only mass to undergo a potential energy change will be 

the swinging booms. 

By solving for v, - v, and applying this to Equation 15 for an actual initial spin rate of io, a 
new initial spin rate Lop is obtained. If in a force field test the booms are released at a system 
angular velocity of A, 8 ,  the booms' angular velocity 6 will equal the 0-g boom angular velocity at 
one point, that is, at B = ~ / 2 ,  and the simulation will be sufficient. 

If the booms are swung in the up direction during the tests, then io, will be higher than the 
actual flight io. Also, because of the conservation of momentum, the final test angular velocity 
L 2  g naturally will  be higher than the actual flight A,. The change in system energy during erection 
in the tests will be greater than in space flight by the amount of potential energy gained; however, 
the angular velocity of the booms will be flight level at the instant of erection. 

It should be remembered that the tests may be run with the appendages swinging down rather 
than up. In this case the potential energy to be dissipated by the booms would have to be subtracted 
from the initial system energy. 

The procedure described, with the appendages swinging up, was used for acceptance tests of the 
satellite Ariel I. The solar paddles and the mass booms, which were used for spin stabilization, 
were tested in this manner. Appendix A gives the dynamic calculations for simulated flight erec- 
tions of the mass booms. 

CONCLUSION 

This method of testing has distinct advantages: it can be quickly incorporated into a test pro- 
gram; no uncertain quantities are introduced into the test setup; and no elaborate test setup is 
necessary. 

Examination of the equations involved will reveal the disadvantages or  limitations. It is always 
necessary to know accurately and to control all parameters (spin rates, inertias, and energy changes) 
in the test system, If the change in potential energy (v, - vo) is large in comparison to the planned 
initial spin rate io=, then precision control of all test parameters becomes necessary to prevent the 
introduction of a large simulation error. Correctly used, however, this technique provides a proper 
means of simulating the space erection of satellite appendages, and tests the entire system for 
impact. 
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Appendix A 

Calculations for Simulating the Zero-Gravity Erection of the 

Ariel I Mass Booms 

As is shown in Figure Al, the Ariel I satellite had eight erectable appendages: two 
experiment-carrying booms, two mass booms for spin stabilization, two solar paddles with rigid 
arms, and two solar paddles with secondary hinges in the arms. In actual flight, prior to any erec- 
tion, the appendages were folded down beside the last-stage rocket bottle. The planned erection 
sequence was as follows: (1) the system was  to be spin-stabilized at 161 rpm prior to the last- 
stage ignition; (2) 15 minutes after last-stage ignition, a stretch yo-yo de-spin device would unwind, 
reducing the spin rate to 76 rpm; (3) 60 seconds after yo-yo release the two experimental booms 

Figure AI-The Ariel I satellite. 
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were to be released and, under the constraint of a governor, erect in approximately 3.0 seconds; 
(4) 60 seconds after the previous action, with the system at approximately 52 rpm, the four solar 
paddles and two mass booms would be released simultaneously and allowed to swing freely to their 
erected positions. At this point the system would be at approximately 35 rpm; (5) 60 seconds later, 
separation of the spacecraft from the last-stage bottle would occur and the satellite would be in orbit 
as seen in Figure Al.  

In the design of the solar paddles and mass booms it was necessary to solve for the impact 
energy at erection of each type appendage. Since they were all released at the same instant but did 
not all reach their erected positions at the same instant, the analytical solution of the process was 
considerably more involved than the case where only one type of appendage erects at a time. In the 
last case, the impact energy at erection in a force free field is: 

where 

E. is the energy that must be absorbed to stop the booms in the erected position, 

I, is the init ial  total moment of inertia about the spin axis of the satellite, spent last stage, and 
attachments, 

I ,  is the final total moment of inertia about the spin axis of the satellite, spent last stage, and 
attachments, 

io is the init ial  angular velocity of the entire system about the symmetrical axis. 

The more involved and actual process of simultaneous erection of dissimilar appendages was 
solved by writing Lagrangian expressions involving the three types of appendages and solving the 
equations on a computer. The resultant actual impact energy load on the two mass booms due to a 
flight erection of the six appendages at an initial ioz of 52 rpm was calculated to be 8.51 ft-lb. 
During development testing of the appendages, it was necessary to test the solar paddles and mass 
booms separately. For a proper acceptance test of the mass booms it was then necessary to con- 
duct tests simulating the booms containing 8.51 ft-lb of kinetic energy at the point of erection. When 
the mass booms were tested separately, this was accomplished by first calculating an initial 0-g sys-  
tem angular velocity io=, which corresponds to 8.51 ft-lb of kinetic energy in the mass booms at 
erection. For the tests it was assumed the experimental booms were open prior to the mass booms 
release and the solar paddles remained folded. The Ariel I moments of inertia for these conditions 
were: 
Equation A1 gives hoZ = 47.5 rpm. The test, therefore, was to simulate a 0-g mass boom erection 
at an initial rotation rate of 47.5 rpm. 

I,, 4.01 slug-ft*; and I ,  after mass boom full erection, 4.84 slug-ft2. With these values, 

From Equation 15 in the body of the report, that is, 
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an initial spin rate A, was calculated to simulate a space erection at 47.5 rpm. Figures A2 and 
A3 show the test system before and after erection. 

To use Equation A2, the potential energy change v, - v, between the configurations shown in 
Figures A2 and A3 was  calculated. Obviously, the mass booms were the only consideration. Fig- 
ure A4 shows the extreme positions of each mass boom. 

The weight w on the end of each arm was 0.775 lb. For E* = 8.51 ft-lb the deflection s was 
calculated to be approximately 5.9 inches. This 6 was large enough to warrant consideration when 
calculating v, - v,. Therefore 

V, - V, = np 6 (x - x cos B ) d x  + nw (1 - c o s e )  dx + np I,’ 
where the last two terms in the expression consider the deflection. For full erection at 
B = n/2 and with i 34.0 (arm extended into the weight), the f i r s t  two terms of Equation A3 are: 

4 10.125 t- ctz 

Z 

Figure A2-Test system before boom erection. 

BOOM DEFLECTION I DUE TO IMPACT 

i 

Figure A3-Test system at boom erection. 
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= 77.3 in-lb 

A close approximation for the third term in Equation A3 was obtained by approximating the curve 
of the deflected boom arm in Figure A4 by a quarter cosine wave function*, that is, 

m 
z = 6(1 - cos x) 

and 

m 
n p l  zdx = np6 1,’ (1 - cos v ) d x  

= np61 (1 - $) = 3.2 in-lb . 

The last term in Equation A3 is simply: 

and so the total potential energy change is 

V, - V, = 77.3 + 3.2 + 9.0 = 89.5 in-lb 

= 7.46 ft-lb. 

All the known values are then applied to 
Equation A2, and 

2( 4.84)( 7.46) 
4.01(4.84 - 4.01) ’og = 1/(4.974)2 

= 65.1 rpm . 

Thus, the actual configuration shown in Fig- 
ure A5 was  s p u n  up to approximately 
67.0 rpm, the drive disengaged, and the spin 

*Den Hartog, J .  P., “Mechanical Vibrations,” 4th Ed., 
New York: McGraw-Hill, 1956, p. 153. 

90; 
/ 

I 

i 

The boom arms on Ariel  1 were 
of f i  lament-wound fiberg lass 
with the following properties: 

E = 1.99 x lo6 psi, 
I = 0.01549 in‘ , 

p = 0.022 Ib/in of length. 

Figure A4-Mass boom displacement. 
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allowed to decay to 65.1 rpm, at which point the booms were released and allowed to swing freely to 
the erected position. Since deflection was  considered, ig was slightly higher than the actual flight 
ez  at 0 = ~ / 2 .  However, the total potential energy in the booms at f u l l  deflection for the tests, when 
i o  g = 65.1 rpm, equaled the potential energy in the booms at fu l l  deflection for a space erection 
when = 47.5 rpm. Figure A6 shows the calculated plots of the kinetic energy in the booms ver- 
sus the boom angle 0 for  the actual space and test conditions. 

From Figure A6 it is seen that at the instant when B = go", or full erection, the booms had about 
12 in-lb more kinetic energy in the tests than during the actual flight. However, the change in po- 
tential energy in the tests due to  the upward deflection of the booms subtracted from the kinetic 
energy. From Equations A4 and A5 it will  be seen that the calculated potential energy change due 
to deflection equals 12.2 in-lb. From high-speed motion pictures of the erection tests, it was ascer- 
tained that the total deflection 6 of each boom end was  approximately 6 inches. Therefore, at fu l l  
deflection, the strain of each boom was  approximately equal to that anticipated in the actual flight 
and simulation was completed. 

If the erecting appendages had been fair ly  rigid and the deflection was  negligible, then a graph 
of the variables in Figure A6 would have shown that the bxo kinetic energy curves terminate on the 
same value at 6 = 90". The angular velocities 8, and eE would have been equal at that point. 

Figure AS-The Ariel I test configuration. 

G-377 N a - L a o g t e y ,  1063 

0 20 40 60 80 100 

BOOM ANGLE 6Ydeg) 

Figure A6-Calculated plots of the kinetic energy in 
the Ariel I mass booms under both test and actual flight 
condi ti ons. 
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